A shaft torsional vibration monitor for a multi-mass rotary shaft system (2024)

(19) A shaft torsional vibration monitor for a multi-mass rotary shaft system (1)
(11) EP0284087B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
09.06.1993Bulletin1993/23

(21) Application number: 88104837.5

(22) Date of filing:25.03.1988
(51) International Patent Classification (IPC)5:G01H1/10

(54)

A shaft torsional vibration monitor for a multi-mass rotary shaft system

Achsentorsionsvibrations-Überwachungsgerät für eine Anordnung mit mehreren Massen an einer rotierenden Achse

Moniteur de vibrations en torsion d'un axe pour un dispositif à plusieurs masses à un axe en rotation


(84) Designated Contracting States:
DE FR

(30) Priority: 27.03.1987JP71757/87

(43) Date of publication of application:
28.09.1988Bulletin1988/39

(73) Proprietor: HITACHI, LTD.
Chiyoda-ku, Tokyo 101(JP)

(72) Inventor:
  • Yagi, Yasuomi
    Hitachi-shi Ibaraki 316(JP)

(74) Representative: Strehl Schübel-Hopf Groening & Partner
Maximilianstrasse 54
80538 München
80538 München(DE)
(56) References cited: :
US-A- 4 276 782
US-A- 4 635 210
  • IEEE TRANSACTIONS ON ENERGY CONVERSION, vol. EC-1, no. 4, December 1986, pages 99-107, IEEE, New York, NY, US; R. BIGRET et al.: "Measuring the torsional modal frequencies of a 900 MW turbogenerator"

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Background of the Invention


[0001]The present invention relates to a shaft torsional vibration monitor for a multi-mass rotary shaft system, for example, such a rotary shaft system of a turbine generator and its prime mover turbine connected thereto.

[0002]To the multi-mass rotary shaft system of such as the turbine generator and its prime mover turbine connected hereto, a shaft torsional vibration is induced, when a disturbance caused by a system fault such as grounding and short circuiting and the following high speed reclosing occurs in a power transmission system to which the turbine generator is connected, or when a disturbance caused by a plant fault occurs in a turbine plant from which the prime mover turbine is supplied driving power. The shaft torsional vibration thus induced causes fatigue of the rotary shaft, monitoring of the shaft torsional vibration is very important for the maintenance of the rotary shaft system.

[0003]A shaft torsional vibration is induced by a change of an external force applied to the rotary shaft system such as electrical torque applied to the turbine generator rotor and mechanical torque applied to the prime mover turbine rotor.

[0004]Under a steady-state operating condition, both a change in the electrical torque due to a load change in the power transmission system and a change in the mechanical torque due to a turbine driving steam or gas pressure change or a turbine driving steam or gas flow rate change are small, the electrical torque and the mechanical torque applied to the turbine rotary shaft system balances and no substantial shaft torsional vibration is induced to the turbine rotary shaft system.

[0005]Under a non-steady-state operating condition such as a system disturbance caused by grounding or short circuiting fault in the power transmission system and the following high speed reclosing, the change in electrical torque applied to the turbine generator is substantial and the electrical torque and the mechanical torque applied to the turbine rotary shaft system unbalances and a shaft torsional vibration is induced to the turbine rotary shaft system.

[0006]An example of conventional shaft torsional vibration monitors for a turbine generator and its prime mover turbine generator is disclosed in US-A-4,276,782 and JP-A-5822923, and includes torque detector means detecting torques applied to the shaft system and a processing circuit connected to the torque detector means and including a memory for determining fatigue and life expectancy of the shaft system by accumulating the torsional stresses thereon. The detector means comprises a plurality of shaft torsion detectors composed of a plurality of turning gears attached to the rotary shaft system and corresponding number of pick-ups to detect relative shaft torsions, at the respective portions of the rotary shaft system in cooperation with the respective turning gears. The known shaft torsional vibration monitor further detects respective external forces applied to the turbine shaft system and processes both detected signals to determine the shaft torsional vibration induced to the turbine shaft system by solving equations of motion of the turbine shaft system.

[0007]Since the rotary shaft system of a turbine generator and its prime mover turbine connected thereto extends as long as several ten meters, it was necessary to measure shaft torsions at many points on the rotary shaft system, so that the number of the shaft torsion detectors to be attached has to be increased which increases the cost of the shaft torsional vibration monitor. Moreover when the shaft torsional vibration monitor is required to be added to an already installed rotary shaft system of such as a turbine generator and its prime mover turbine connected thereto, positions and spaces for the attachment of the shaft torsion detectors of the shaft torsional vibration monitor are extremely limited.

Summary of the Invention


[0008]One Object of the present invention is to provide a shaft torsional vibration monitor for a multi-mass rotary shaft system which eliminates the conventional necessity of the torsion detectors.

[0009]Another object of the present invention is to provide a shaft torsional vibration monitor for a multi-mass rotary shaft system which effects a high precision of detection of the shaft torsional vibration induced in the rotary shaft system.

[0010]These objects are met by the shaft torsional vibration monitor as claimed.

[0011]The shaft torsional vibration monitor for a multi-mass rotary shaft system described in detail below applies a conventional power transmission system analysis method disclosed, for example, in Takashi Watanabe et al. "Influence of High-speed Reclosing on Turbine-generators and the Shaft System" (Hitachi Review Vol. 27 (1978), No. 1, pp 33-38), wherein many kinds of electrical torque changes caused to a turbine generator rotor under several system disturbances are calculated in off-line by using power transmission system analyses method, and the respective calculated electrical torque changes are applied to a spring mass model simulating the turbine rotary shaft system to determine shaft torsional vibration induced to the turbine rotary shaft system in off-line by solving equations of motion thereof.

Brief Description of the Drawings


[0012]

Fig. 1 is a schematic diagram illustrating a multi-mass rotary shaft system of a turbine generator and its prime mover turbine connected thereto, to which the shaft torsional vibration monitor for a multi-mass rotary shaft system of the present invention is applied.

Fig. 2 is a spring mass model simulating the multi-mass rotary shaft system shown in Fig. 1.

Fig. 3 is a block diagram of one embodiment of the shaft torsional vibration monitor according to the present invention applied, to the multi-mass rotary shaft system shown in Fig. 1.


Principle of the Invention


[0013]In Fig. 1, a turbine generator 10 and its prime mover turbine 20 connected through a rotary shaft 30 constitute a multi-mass rotary shaft system. The prime mover turbine 20 is composed of a first low pressure turbine 24, a second low pressure turbine 22, an intermediate pressure turbine 26 and a high pressure turbine 28 connected respectively through rotary shafts 32, 34 and 36. The multi-mass rotary shaft system shown in Fig. 1 is simulated by a spring mass model as shown in Fig. 2.

[0014]General equation of motion at a certain mass point of the multi-mass rotary shaft system simulated by the spring mass model is represented as follows,

[0015]
A shaft torsional vibration monitor for a multi-mass rotary shaft system (2)
wherein, δi+1 represents an amount of change in torsional angle (rad) of the rotary shaft system at i + 1 mass point, Ki,i+1 a a torsional spring constant of the rotary shaft system between mass points i and i + 1, Di,i+1 an attenuation constant of the rotary shaft system between mass points i and i+1, Di+1,i+1 an attenuation constant of the rotary shaft system at mass point i + such as wind loss, Mi+1 an inertia constant of mass point i + 1 and Ti+1 an amount of change in torque applied to mass point i + 1, wherein i is a positive integer including zero.

[0016]When the above equation of motion (1) is applied to the spring mass model shown in Fig. 2 having five mass points, five second-order differential equations to be solved step by step establish, however since these five second-order differential equations are equivalent to the following ten one-order differential equations (2)-(11), the shaft torsional vibrations of the rotary shaft system at respective mass points are obtained by solving step by step the following ten one-order differential equations (2)-(11);
A shaft torsional vibration monitor for a multi-mass rotary shaft system (3)

A shaft torsional vibration monitor for a multi-mass rotary shaft system (4)

A shaft torsional vibration monitor for a multi-mass rotary shaft system (5)

A shaft torsional vibration monitor for a multi-mass rotary shaft system (6)

A shaft torsional vibration monitor for a multi-mass rotary shaft system (7)

A shaft torsional vibration monitor for a multi-mass rotary shaft system (8)

A shaft torsional vibration monitor for a multi-mass rotary shaft system (9)

A shaft torsional vibration monitor for a multi-mass rotary shaft system (10)

A shaft torsional vibration monitor for a multi-mass rotary shaft system (11)

A shaft torsional vibration monitor for a multi-mass rotary shaft system (12)

[0017]wherein v1-V5 represents torsional vibration angular velocities (rad) at respective mass points.

[0018]The system disturbance usually continues about several ten seconds, in that, from occurrence of the disturbance to its ceasing.

[0019]The shaft torsional vibrations of the rotary shaft system at respective mass points are obtained by solving step by step the above equations (2)-(11) while only employing detected torque variations happened at respective mass points of the rotary shaft system, assuming that there is no torsional vibration at the initial condition and using a numerical analysis method such as Runge-Kutta-Gill method and trapezoidal method without actual measurement of the relative torsional angle at several points on the rotary shaft system which was needed with the conventional shaft torsion detector.

[0020]Further a time step At when solving the above equations (2)-(11), in other words signal sampling period, is preferable to be less than 1 msec for exactly simulating the shaft torsional vibration of the rotary shaft system induced by an electrical torque of a frequency (frequency : 100/120 Hz, period: 10/9.3 msec) twice the fundamental frequency generated by a negative phase current caused at the time of a grounding fault.

[0021]A microprocessor employed for a shaft torsional vibration monitor is preferable to be a reasonable size so that a processing time of about 30 msec with such microprocessor is needed to simulate the shaft torsional vibration during the one time step At of 1 msec by solving the above ten one-order differential equations (2)-(11) while using for example Runge-Kutta-Gill method. Therefore in order to exactly simulating the shaft torsional vibration induced by a system disturbance which actually continues about several ten seconds, a processing time of more than several ten times of the actual shaft torsional vibration period, in that, about a few minutes with such microprocessor is necessary. Description of the Preferred Embodiment

[0022]Fig. 3 shows a schematic block diagram of a shaft torsional vibration monitor 40 of one embodiment of the present invention applied to the rotary shaft system of a turbine generator 10 and its prime mover turbine 20 as shown and explained in connection with Figs. 1 and 2.

[0023]The shaft torsional vibration monitor 40 is composed of a torque detector 50 which detects electrical and mechanical torques applied to the rotary shaft system at the respective mass points, a memory unit 60 capable of storing a plurality of sets of torque variation data caused by disturbances from the torque detector 50, a shaft torsional vibration processing unit 70 which fetches the sets of torque variation data one after another from the memory unit 60 and determines shaft torsional vibration induced to the rotary shaft system and a shaft fatigue and life expectancy processing unit 80 which receives torsional stress data corresponding to the respective shaft torsional vibrations from the shaft torsional vibration processing unit 70 and determines shaft life expenditure by classifying the torsional stresses by magnitude, weighing the classified torsional stresses and integrating the weighed torsional stresses with respect to each shaft torsional vibration due to each disturbances and by accumulating the integrated torsional stresses of the respective shaft torsional vibrations due to disturbances.

[0024]The torque detector 50 is composed of an electrical torque detector 51 which detects an external electrically induced force applied to the rotor of the turbine generator 10, and a mechanical torque detector 52 which detects another external force applied to the respective rotors of the second low pressure turbine 22, the first low pressure turbine 24, the intermediate pressure turbine 26 and the high pressure turbine 28.

[0025]The electrical torque detector 51 detects terminal voltage e and current and rotating angular velocity of the poly phase turbine generator 10 and outputs to the memory unit 60 a set of torque variation data for 30 seconds having a predetermined torque variation rate due to a system disturbance.

[0026]The mechanical torque detector 52 detects steam pressures and flow rates thereof to the respective turbines and governor conditions thereof and outputs to the memory unit 60 a set of torque vibration data for 30 seconds having a predetermined torque variation rate due to a turbine plant disturbance.

[0027]The electrical torque detector 51 is composed of a y-detector 53 which determines a deviation angle y of the direct axis of the rotor to the magnetic flux direction caused by an armature current flowing through a predetermined armature phase winding, in other words, a direction of winding axis of a predetermined armature phase winding, of the turbine generator 10, a dq-converter 54 which converts the poly phase terminal voltage e and current of the turbine generator 10 into direct and quadrature axis voltage and current components thereof by using the deviation angle y from the y-detector, a magnetic flux processing element 55 which determines direct and quadrature axis magnetic flux components induced by the armature winding of the turbine generator 10 using the direct and quadrature axis voltage and current components from the dq-converter 54, and an electrical torque processing element 56 which determines an electro-magnetic torque or an air gap torque by using the direct and quadrature axis current and magnetic flux components obtained respectively from the dq-converter 54 and the magnetic flux processing element 55. Since the electrical torque detector 51 determines the electrical torque applied to the rotor of the turbine generator 10 by its electromagnetic torque which is not affected by a sudden transient change of the terminal voltages of the turbine generator 10, the electrical torque detector 51 determines a precise set of torque variation data due to a system disturbance in particular during initial transient period thereof which enhance a precise monitoring of shaft torsional vibration induced in the rotary shaft system.

[0028]The capacity of the memory unit 60 is so determined that when a plurality of system disturbances having initial rates of torque variation exceeding a predetermined value occur intermittently in a few minutes before completing processing of a first set of torque variation data in the shaft torsional vibration processing unit 70, the memory unit 60 is able to store temporarily the torque variation data caused by the subsequent system disturbances. Thereby the shaft torsional vibration monitor 40 eliminates dead zone for the torque variations due to system disturbances occurring in a short interval.

[0029]The shaft torsional vibration processing unit 70 determines shaft torsional vibrations induced to the rotary shaft system by solving the equations (2)-(11) step by step through Runge-Kutta-Gill method by applying the fetched sets of torque variation data from the memory unit 60 and assuming that there is no torsional vibration at the initial condition.

[0030]The mechanical torque detector 52 in the torque detector 50 of the above embodiment may be excluded, because a change rate of the mechanical torque applied to the turbine is practically very small in comparison with that of the electrical torque applied to the turbine generator, and is negligible in many cases.

[0031]Although the torque variation data sampling time covering one set of torque variation data in the above embodiment is set to be 30 seconds, the data sampling time is not limited to the specific time, further the data sampling time may be variable in such a manner that the data sampling is stopped when a torque variation rate decreases below a predetermined amount.

1. A shaft torsional vibration monitor for a multi-mass rotary shaft system, comprising

a torque detector (50) detecting torques applied to the shaft system (10...36), and

a processing circuit (60, 70, 80) connected to the torque detector (50) and including

a memory unit (60) adapted for temporarily storing at least two sets of torque variation data due to disturbancies, each having an initial rate of torque variation exceeding a predetermined value,

a first processing unit (70) receiving the respective sets of torque variation data one after the other from the memory unit (60) and calculating the shaft torsional vibrations corresponding to the respective torque variations, by solving equations of motion of a spring mass model simulating the shaft system (10...36), and

a second processing unit (80) which determines the fatigue and life expectancy of the shaft system (10...36) by accumulating the calculated shaft torsional vibrations received one after the other from the first processing unit (70).


2. The monitor of claim 1, wherein the shaft system includes a poly-phase turbine generator (10) and its prime mover turbine (20) connected thereto and wherein the torque detector (50) detects the electrical torque applied to the turbine generator (10).

3. The monitor of claim 2, wherein said torque detector (50) detects the electromagnetic torque as the electrical torque.

4. The monitor of claim 2 or 3, wherein said torque detector (50) detects the terminal phase voltages and currents and the rotary angular velocity of the turbine generator (10) and includes

a y-detector (53) determining an angle difference(y) between the direct axis of the turbine generator rotor and the direction of the winding axis of a predetermined armature phase winding of the turbine generator armature by using the detected phase voltages and the rotating angular velocity,

a dq-converter (54) converting the detected terminal phase voltages and currents into direct and quadrature axis voltage and current components by using the determined angle difference (y) from said y-detector (53),

a first processing element (55) determining direct and quadrature axis magnetic flux components induced by the turbine generator armature winding by using the resultant direct and quadrature axis voltage and current components from said dq-converter (54), and

a second processing element (56) determining the electromagnetic torque by using the direct and quadrature axis current components obtained from said dq-converter (54) and the direct and quadrature axis magnetic flux components obtained from said first processing element (55).


5. The monitor of any of claims 1 to 4, wherein said torque detector (50) further detects the mechanical torque applied to the prime mover turbine (20).

1. Achsentorsionsvibrations-Überwachungsgerät für ein rotierendes Wellensystem mit vielen Massen, mit

einem Drehmomentfühler (50), der die Drehmomente ermittelt, die am Wellensystem (10...36) angelegt werden, und

einer Verarbeitungsschaltung (60, 70, 80), die mit dem Drehmomentfühler (50) verbunden ist und folgendes umfaßt:

eine Speichereinheit (60), die zum zeitweisen Speichern mindestens zweier Gruppen von Drehmoment-Änderungsdaten infolge von Störungen eingerichtet ist, wobei jede ein Ausgangsmaß der Drehmomentänderung aufweist, das einen vorbestimmten Wert überschreitet,

eine erste Verarbeitungseinheit (70), die die entsprechenden Gruppen der Drehmoment-Änderungsdaten aufeinanderfolgend aus der Speichereinheit (60) empfängt und die Wellen-Drehmomentschwingungen entsprechend den jeweiligen Drehmomentänderungen durch Lösen von Bewegungsgleichungen eines Federmassenmodells errechnet, das das Wellensystem (10...36) simuliert, und

eine zweite Verarbeitungseinheit (80), die die Ermüdungs- und Lebenszeiterwartung des Wellensystems (10...36) durch Aufsummieren der errechneten Wellen-Torsionsschwingungen bestimmt, die aufeinanderfolgend aus der ersten Verarbeitungseinheit (70) empfangen wurden.


2. Überwachungsgerät nach Anspruch 1, worin das Wellensystem einen mehrphasigen Turbinengenerator (10) und seine Hauptantriebsturbine (20), die hiermit verbunden ist, umfaßt, und worin der Drehmomentfühler (50) das elektrische Drehmoment ermittelt, das am Turbinengenerator (10) angelegt wird.

3. Überwachungsgerät nach Anspruch 2, worin der genannte Drehmomentfühler (50) das elektromagnetische Drehmoment als das elektrische Drehmoment ermittelt.

4. Überwachungsgerät nach Anspruch 2 oder 3, worin der genannte Drehmomentfühler (50) die Anschlußphasenspannungen und -ströme sowie die Drehwinkelgeschwindigkeit des Turbinengenerators (10) ermittelt und folgende Merkmale umfaßt:

ein y-Meßfühler (53), der eine Winkeldifferenz (y) zwischen der Längsachse des Turbinengeneratorläufers und der Richtung der Wicklungsachse einer vorbestimmten Ankerphasenwicklung des Turbinengeneratorankers durch Benutzung der ermittelten Phasenspannungen und der Drehwinkelgeschwindigkeit bestimmt,

einen dq-Wandler (55), der die ermittelten Anschlußphasenspannungen und -ströme in Längs- und Querachsen-Spannungs- und -Stromkomponenten durch Benutzung der bestimmten Winkeldifferenz (y) aus dem y-Fühler (53) umwandelt,

ein erstes Verarbeitungselement (55), das die Längs- und Querachsen-Magnetflußkomponenten bestimmt, die von der Turbinengenerator-Ankerwicklung induziert werden, durch Benutzung der resultierenden Längs- und Querachsen-Spannungs- und -Stromkomponenten aus dem dq-Wandler (54), und

ein zweites Verarbeitungselement (56), das das elektromagnetische Drehmoment durch Benutzung der Längs- und Querachsen-Spannungs- und -Stromkomponenten bestimmt, die aus dem dq-Wandler (54) und den Längs- und QuerachsenMagnetflußkomponenten erhalten werden, die aus dem genannten ersten Verarbeitungselement (55) erhalten wurden.


5. Überwachungsgerät nach jedem der Ansprüche 1 bis 4, worin der genannte Drehmomentfühler (50) ferner das mechanische Drehmoment ermittelt, das an der Hauptantriebsturbine (20) angelegt wird.

1. Moniteur de vibrations en torsion d'un axe pour un système d'axe rotatif à masses multiples, comportant

un détecteur de couple (50) détectant des couples appliqués au système d'axe (10...36), et

un circuit de traitement (60, 70, 80) relié au détecteur de couple (50) et comprenant une unité de mémoire (60) apte à mémoriser temporairement au moins deux ensembles de données de variation de couple dûes à des perturbations, chacun ayant un taux initial de variation de couple dépassant une valeur prédéterminée,

une première unité de traitement (70) recevant les ensembles respectifs de données de variation de couple en succession en provenance de l'unité de mémoire (60) et calculant les vibrations en torsion de l'axe correspondant aux variations de couple respectives, en résolvant les équations de mouvement d'un modèle à masse élastique simulant le système d'axe (10...36), et

une seconde unité de traitement (80) qui détermine la fatigue et l'espérance de vie du système d'axe (10...36) en accumulant les vibrations en torsion de l'axe calculées reçues en succession de la première unité de traitement (70).


2. Moniteur selon la revendication 1, dans lequel le système d'axe comprend un générateur à turbine polyphasé (10) et sa turbine d'entraînement (20) qui y est reliée et dans lequel le détecteur de couple (50) détecte le couple électrique appliqué au générateur à turbine (10).

3. Moniteur selon la revendication 2, dans lequel ledit détecteur de couple (50) détecte le couple électromagnétique en tant que couple électrique.

4. Moniteur selon la revendication 2 ou 3, dans lequel ledit détecteur de couple (50) détecte les tensions et les courants de phase terminale et la vitesse angulaire de rotation du générateur à turbine (10) et comprend

un détecteur y (53) déterminant une différence angulaire (y) entre l'axe direct du rotor du générateur à turbine et la direction de l'axe d'enroulement d'un enroulement de phase d'induit prédéterminé de l'induit du générateur à turbine en utilisant les tensions de phase détectées et la vitesse angulaire de rotation,

un convertisseur dq (54) convertissant les tensions et les courants de phase terminale détectés en composantes de tensions et de courants d'axe direct et en quadrature en utilisant la différence angulaire déterminée (y) provenant dudit détecteur y (53),

un premier élément de traitement (55) déterminant des composantes de flux magnétique d'axe direct et en quadrature induites par l'enroulement d'induit du générateur à turbine en utilisant les composantes de tensions et de courants d'axe direct et en quadrature provenant dudit convertisseur dq (54), et

un second élément de traitement (56) déterminant le couple électromagnétique en utilisant les composantes de courant d'axe direct et en quadrature obtenues dudit convertisseur dq (54) et les composantes de flux magnétique d'axe direct et en quadrature obtenues dudit premier élément de traitement (55).


5. Moniteur selon l'une quelconque des revendications 1 à 4, dans lequel ledit détecteur de couple (50) détecte en outre le couple mécanique appliqué à la turbine d'entraînement (20).

A shaft torsional vibration monitor for a multi-mass rotary shaft system (2024)
Top Articles
Latest Posts
Article information

Author: Madonna Wisozk

Last Updated:

Views: 6401

Rating: 4.8 / 5 (68 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Madonna Wisozk

Birthday: 2001-02-23

Address: 656 Gerhold Summit, Sidneyberg, FL 78179-2512

Phone: +6742282696652

Job: Customer Banking Liaison

Hobby: Flower arranging, Yo-yoing, Tai chi, Rowing, Macrame, Urban exploration, Knife making

Introduction: My name is Madonna Wisozk, I am a attractive, healthy, thoughtful, faithful, open, vivacious, zany person who loves writing and wants to share my knowledge and understanding with you.